PHYSICAL REVIEW E 71, 016124(2005

Theory of relativistic Brownian motion: The (1+1)-dimensional case
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We construct a theory for thél+1)-dimensional Brownian motion in a viscous medium, which(ils
consistent with Einstein’s theory of special relativity afiid reduces to the standard Brownian motion in the
Newtonian limit case. In the first part of this work the classical Langevin equations of motion, governing the
nonrelativistic dynamics of a free Brownian particle in the presence of a heafvhite noise, are general-
ized in the framework of special relativity. Subsequently, the corresponding relativistic Langevin equations are
discussed in the context of the generalized(firepoint discretization rujeversus the Stratonovidmidpoint
discretization rulg dilemma: It is found that the relativistic Langevin equation in the Hanggi-Klimontovich
interpretation(with the postpoint discretization rylés the only one that yields agreement with the relativistic
Maxwell distribution. Numerical results for the relativistic Langevin equation of a free Brownian particle are
presented.
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[. INTRODUCTION With regard to special relativity, standard Brownian mo-
tion faces the problem that it permits velocity jumfs, that
For almost 100 years, Einstein’s theory of special relativ-exceed the speed of ligkt(see also Scha}g]). This is due
ity [1,2] is serving as the foundation of our most successfuto the fact that in the nonrelativistic theory the velocity in-
physical standard modelgpart from gravity. The most crementsAv have a Gaussian distribution, which always as-
prominent and, probably, also the most important feature oéigns a nonvanishingthough sma)l probability to events
this theory is the absolute character of the speed of light Av>c. This problem is also reflected by the Maxwell distri-
representing an unsurmountable barrier for the velocity obution, which represents the stationary velocity distribution
any (macroscopigphysical process. Due to the great experi-for an ensemble of free Brownian particles and permits ab-
mental success of the original theory, almost all other physisolute velocity values >c [20].
cal theories have successfully been adapted to the framework The first relativistically consistent generalization of Max-
of special relativity over the past decades. Surprisingly, howWell's velocity distribution was introduced by Juttri@4] in
ever, the scientific literature provides relatively few publica-1911. Starting from an extremum principle for the entropy,
tions on the subject of relativistic Brownian motiofeiassi- he obtained the probability distribution function of the rela-

cal references ard3-5 and more recent contributions fvistic ideal Boltzmann gagsee Eq.(67) below]. In prin-
include[6—13) ciple, however, Jittner's approach made no contact with the

theory of Brownian motion. Fifty years after Juttner’s work,

Brownian particles are physical objedtsg., dust grains ! . :
; . Schay[3] performed the first comprehensive mathematical
that move randomly through a surrounding medidneat jnvestigation of relativistic diffusion processes based on

bath). Their stochastic motions are caused by permanent CO|Zorentz—invr:1riant transition probabilities. On the mathemati-
lisions with much lighter constituents of the heat bédty., cal side, Schay's analysis was complemented by HdlEm
molecules of a liquigl The classical theory of Brownian mo- and Dualey[4] who studied in detail the properties of
tion or nonrelativisticdiffusion theory, respectively, was de- Lorentz-invariaﬁt Markov processes in relativistic phase
veloped by Einstein[14] and Einstein and von Smolu- space. After 40 more years, Franchi and Le [i58] have
chowski[15]. Since the beginning of the last century, when ,ocented an extension of Dudley’s work to general relativ-
their S.em'”a.' papers were pubhs_hed, the classical theory h . In particular, these authors discuss relativistic diffusions
been investigated and generalized by a large number Qf e nresence of a Schwarzschild mef@s]. Hence, over
physicists{ 16-20 and mathematigiar{Ql—Z:ﬂ. The intense the past 100 years there has been std#uyugh rela,tively
Slow) progress in the mathematical analysis of relativistic
diffusion processes.

By contrast, one finds in the physical literature only very
few publications that directly address the topic of the relativ-
istic Brownian motion(despite the fact that relativistic ki-
netic theory has been fairly well established for more than
30 yearqd 26—-29). Among the few exceptions are the papers
by Boyer[8,9] and Ben-Ya'aco\6], who have studied the
*Electronic address: dunkel@physik.hu-berlin.de interaction between two energy-level particles and electro-

sentations of the Brownian motion dynami¢kangevin

equations, Fokker-Planck equatioff$PE), etc.] [18-20, to

the notion of the Wiener processgl], and to new tech-
niques for solving partial differential equatiotteynman-
Kac formula, etc[22,23).
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magnetic radiation in thermal equilibrium, the latter acting asbath (e.g., small liquid particles In the Langevin approach
a heat bath. In contrast to their specific microscopic modelthe nonrelativistic dynamics of the Brownian particle is de-
we shall adopt a more coarse-grained point of view here bgcribed by the stochastic dynamical equatitsez, e.g.[20]
assuming that the heat bath is sufficiently well described byChap. X

macroscopic friction and diffusion coefficients. ax(t)
X

Generally, the objective of the present paper can be sum- —= =), (1a)
marized as follows: We would like to discuss how one can dt
construct, in a physically straightforward manner, a relativ-
istic theory of Brownian motion for particles moving in a do(t)
homogeneous, viscous medium. For this purpose it is suffi- m= = vmo(t) +L(Y), (1b)

cient to concentrate on the case of 1+1 dimensigeser-
alizations to the 1+3 dimensions are straightforward and willwhere v is the viscous friction coefficient. The Langevin
be discussed separately in a forthcoming contributiés a  force L(t) is characterized by

starting point we choose the nonrelativistic Langevin equa-

tions of the free Brownian particle. In Sec. Il these equations (L(1))=0, (L(L(s)=2Ddt-59), 2
will be generalized such that they comply with special rela
tivity. As we shall see in Sec. Il due to multiplicative noise
for the momentum degree of freedom, the resulting relativ
istic Langevin equations areot sufficient in order to
uniquely determine the corresponding Fokker-Planck equ
tion (generalized Ito-Stratonovich dilemmd-urthermore, it

it is shown that the stationary solution of a particular form
for the relativistic Fokker-Planck equation coincides with
Juttner’s relativistic Maxwell distributioriSec. Il B 3. Fi-
nally, we also discuss numerical results for the mean-squa

“with all higher cumulants being zet@Gaussian white noige
and D being constant. More general models may include
velocity-dependent parameterss and D (see, e.g.,
19,30-32), but we shall restrict ourselves to the simplest
case here. It is worthwhile to summarize the physical as-
sumptions, implicitly underlying Eqg1) as follows:

(i) The heat bath is homogeneous.

(i) Stochastic impacts between the Brownian particle and
the constituents of the heat bath occur virtually uncorrelated.
re (i) On the macroscopic level, the interaction between

displacement in Sec. IV. Brownian particle and heat bath is sufficiently well described

It might be worthwhile to emphasize that the syst_ematicby the constant viscous friction coefficientand the white
Langevin approach pursued below is methodically dn‘ferentnoise forcel

from those in Refs[3—-13 and also from the kinetic theory
approach[26-29. It is therefore satisfactory that our find-
ings are apparently consistent with rigorous mathematic
results, obtained by Scha$] and Dudley{4] for the case of
free relativistic diffusion. Moreover, it will become clear in
Sec. IV that numerical simulations of the relativistic Lange-
vin equations constitute a very useful tool for the numerical
investigation of relativistic diffusion processes, provided that
the discretization rule is carefully chosen. dmu(t)] = = vmo(t)dt + dW(t), (39

(iv) Equations(1) hold in the rest fram&,, of the heat
ath (corresponding to the specific inertial system, in which
he average velocity of the heat bath vanishes for all tithes

In the following X, will also be referred to asaboratory
frame
In the mathematical literature, E¢Lb) is usually written

Il. LANGEVIN DYNAMICS whereW(t) is a one-dimensional Wiener procd4$9,22,23,

First the main properties of the nonrelativistic Langevin € the density of the increments

equations for free Brownian particles are briefly summarized w(t) = dW(t) = W(t + dt) — W) (3b)

(Sec. Il A). Subsequently, we construct generalized Lorentz-

covariant Langevin equatior(§ec. Il B. Finally, the cova- is given by

riant Langevin equations will be rewritten in laboratory co- )

ordinates(Sec. 11 O. PHW(D)] = 1 exp{— w(t) } (30)
The following notations will be used throughout the pa- V4D dt 4D dt

per. Since we confine ourselves to tfte+ 1)-dimensional o ) )
case, upper and lower Greek indices, ... cantake values Here the abbreviatiomv=dW has been introduced to sim-

0, 1, where O refers to the time component. TheF’Iify the notation in sgbsequent formulas. From Egp) one
(1+1)-dimensional Minkowski metric tensor with respect to fiNds in agreement witi2)
Cartesian coordinates is taken as 0 t+s

(77ap) = (7*F) = diag- 1, 1). 2Ddt, t=s.

Moreover, Einstein’s summation convention is invokedpepending on which notation is more convenient for the
throughout. current purpose, we shall use below either the physical for-
mulation (1) or the mathematical formulatio(8). The two

] o ) . ) formulations can be connected bprmally) setting
Consider the nonrelativistic one-dimensional motion of a

Brownian particle with masm that is surrounded by a heat w(t) = dW(t) = L(t)dt. (5)

(w(t)) =0, (wt)w(s))= { (4)

A. Physical foundations
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trast, in the relativistic theory these equations are exact at

It is well known that in inertial coordinate systems, which time t only if . is comoving at time. In the latter case, we

are comoving with a particle at a given momenthe rela-

can use Eq910) to construct relativistically covariant equa-

tivistic equations must reduce to the nonrelativistic Newton-ions of motion. Introducing, as usual, the proper timby

ian equationgsee, e.g.[25] Chap. 2.3. Therefore, our strat-

egy is as follows. Starting from the Langevin equatighs

or (3a), respectively, we construct in the first step the non-
relativistic equations of motion with respect to a coordinate

the definition

11

2 2
1% Ux
dTEdt\ll—?:dh\ll—?,

frame ., comoving with the Brownian particle at a given 4q combining momentunp.=mv. and energy into a

momentt. In the second step, the general form of the CoVay1 +1)-vector (p?) =(p°, p-) = (E+/c, p-), we can rewrite Egs.
riant relativistic equation motions are found by applying a7 i the covariant form T

Lorentz transformation to the nonrelativistic equations that

have been obtained fa-.

It is useful to begin by considering the deterministic
(noise-free limit case, corresponding to a pure damping of

dp?
dr

=f () =—-mv(0,vs — V). (12

the particle’s motion. This will be done Sec. Il B 1. Subse-Let (u) and(Uf) denote thg1+ 1)-velocity components of
guently, the stochastic force is separately treated in Se®rownian particle and heat bath, respectively. Now it is im-

1B 2.

1. Viscous friction

Setting the stochastic force term to zécorresponding to

a vanishing temperature of the heat Hathe nonrelativistic
Eq. (1b) simplifies to

do(t
m ’;i ) 6)
The energy of the Brownian particle is purely kinetic,
mo(t)?
Eﬂ)=—7;—, (7)

and, by virtue of(6), its time derivative is given by
dE dv _

ge_ 2
o mvdt vmo<. (8)

As stated above, in the nonrelativistic theory the last three

equations are assumed to hold in the rest fragef the heat
bath. Now consider another inertial coordinate syskmin

which the Brownian particle is temporarily at rest at titre

t.=t.(t), respectively, wheré. denotes the.-time coordi-
nate. That is, irt. we have at time

v«(t) = v«(t<(t)) = 0. (9)

[Conventionally, we use throughout the lax notatigt)

=g.(t«(t)), whereg- is originally a function oft..] With

respect to the comoving framg., the heat bath will, in
general, have a nonvanishirigverage velocity V.. Then,
using a Galilean transformation we find that Ef) in 2«

coordinates at timeé reads as follows:

d (9)

m d’:* (t) = = vm(v-(t) = Vo) = vm\VL. (108
Similarly, in 2. coordinates Eq(8) is given by
dE. ©
(t) = = vmo«(t) (v«(t) = V=) =0. (10b)

dt*

Note that in the nonrelativistiétNewtoniarn theory the left
equalities in Eqs(10) are valid for arbitrary time. By con-

portant to realize that the covariant force vedtbcannotbe
simply proportional to thé1+1)-velocity difference,

f&# —mu(us - U9, (13
because, in general, at tinién .«
9
0 .0 c c c
Us — U* = - =C-— # O .
V1-0¥c2  \1-VAc? V1-V2/c?
(14

However, we can writé in a manifestly covariant form, if
we introduce thdriction tensor

(n” )—(0 0) (15)
e 0 v/’
which allows us to rewrité12) as
dp¢
—_ a (B_118
dT - muvx B(U* U*). (16)

This equation is manifestly Lorentz-invariant, and we drop
the asterisk from now on, while keeping in mind that the
diagonal form of the friction tensdd5) is linked to the rest
frameZ2.. of the Brownian particle. In this respect the friction
tensor is very similar to the pressure tensor, as known from
the relativistic hydrodynamics of perfect fluidsee, e.g.,
[25] Chap. 2.1 This analogy yields immediately the fol-
lowing representation:
u*u
vaﬁ: V( 7]0‘,3+ ?é) (17)

It is now interesting to consider E¢L6) in the laboratory
frame X, defined above as the rest frame of the heat bath.
There we have

1
V1 -v%c?
(18)

Combining (16)—(18) we find that the relativistic equations
of motion in 3 are given by

(UP)=(c,0),

d
) = (e, ), df=;t, y
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relativistic velocity curves, given by E@24), exhibit essen-
tial deviations from the purely exponential decay, predicted
by the Newtonian theory.

2. Stochastic force

We now construct aelativistic generalization of the sto-
chastic force To this end, we consider E¢L1) as anopera-
tional definitionfor the proper time parameter The gener-

. . . . alization procedure will be based on the standard assumption
] 1 2 3 4 5 (postulate that, in temporarily comoving inertial frames.,

tvh the relativistic equations of motions must reduce to the New-
_ _ tonian equations of motions. According to this assumption,
FIG. 1. Velocity curves)(t), corresponding to EG24), for the {5y framess.., comoving with the particle at laboratory time

purely damped motion of a relativistic particle in the rest frame of; e relativistic stochastic differential equation must reduce
the heat bathlaboratory framg Especially at high velocitieq|

=<c, the relativistic velocity curves deviate from the exponential

0.01

decay, predicted by the Newtonian theory. dp- (1) = = v(p:(t) = MV&)dt. + W (1) (25)
dp Mo where the momentum increments.=dW. represent a
P T (1989  Wiener-process with parametBy, i.e., the incrementsv (t)
V1-vc have a Gaussian distribution
dE mo? 1 W (t)?
— . 19b e (t)] = — exp(— . (26)
dt V1 -v?/c? (190 VAmD dt. 4D dt.

On comparing19a with (6) and(19b) with (8), one readily  Note that also in the relativistic theory tineomentunincre-
observes that the relativistic equatiqi®) do indeed reduce mentsw(t)=dWt) may tend to infinity, as long as the related

to the known Newtonian laws in the limit casé/c?><1. velocity increments remain bounded. In other words, in the
Using the relativistic definitions relativistic theory one must carefully distinguish between
E= e — o (20) stochastic momentum anq 'vellocity incremefitss is not .
yme,  p=ym, necessary in the nonrelativistic theory, because Newtonian
Egs.(19) can also be rewritten as momenta are simply proportional to their velocijies
dp The next step is now to define theerement(1 +1)-vector
hal P b
i) (219 %Y
(W) = (0,ws). (27)
2
d—E =—ypv=- va—Z. (21b) This definition is in agreement with the requirement that in a
dt ¢ comoving inertial system2. the 0-component of the

In fact, only one of the two Eqg19) or (21), respectively, (1+21)-force vector must vanislsee, e.g.[25] Chap. 2.3,
must be solved due to the fixed relation between relativisti@nd also compare Eq¢12), (31), and (32) of the present

energy and momentum: papej. Moreover, if the Lorentz fram&. is comoving with

the Brownian particle at given timeg then the(equal-time
.07 =—EYR+pP=—nP O E(t)= mc white-noise relation$4) generalize to
a “”1 - 2/ 2 '
v1-vec - WD) =0, (WEOWED) 0, a=0 and/orB=0,
Wi = y Wi Wi = .
(22 2D dit., otherwise.
The solution of(219 reads (28)
p(t) = po exp(~ 1), p(0) = po, (23)

The rhs. of the second equation(28) makes it plausible to
and, by using(20), one thus obtains for the velocity of the introduce acorrelation tensoroy
particle in the laboratory fram&, (rest frame of the heat

bath (0 0 )
Dx,p) = 2
v2 p2]-v2 (Drap) 0 2Ddt./’ (293
t) = 1-= e+ = | . 24
v{t) UO{( c2> cz] (24 thus,
Figure 1 depicts a semi-logarithmic representation of the ve- (WEHWE()) = D, *F (29h)

locity v(t) for different values of the initial velocity,. As
one can see in the diagram, at high velocitiessc the  Additionally defining an‘inverse” correlation tensorby
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- 0 0 from (35b) and then used that,w*=0, see Eq(32).
(Drap) = (O (2D dt )_1), (299 By virtue of the above results, we are now in the position
. to write down the covariant Langevin equations with respect
allows us to generalize the distribution of the incrementgo an arbitrary inertial system: If a Brownian particle with
from Eg. (26) as follows: rest massm, proper timer and (1+1)-velocity u® is sur-

1. rounded by an isotropic, homogeneous heat bath with con-
PHYWA(L)) = —_— exp{— —D*aﬁwf‘(t)wf(t)} SWO(t)). stant 1+1 velocityU?, then the relativistic Langevin equa-
V4wD dt* 2 tions of motions read
30
o o =27 (364
Here, the Diracs-function on the right-hand side accounts A==, 97

for the fact that the 0 component of the stochastic force must
vanish in every inertial frame, comoving with the Brownian
particle at timet; compare Eq(27). This also follows more
generally from the identity

dp“(7) =- Vaﬁ(pﬁ(r) -mUPdr+w(7), (36b)
where, according to Eq17), the friction tensor is given by

d d
= —(-mc) = m—(u,u®) = 2u,f?, 31 u“u
Cemd =M =2l (3 = 58], (369
which, in the case of the stochastic force, translates to ) ) ) o o _
with v denoting the viscous friction coefficient measured in

0 =uw*. (32 the rest frame of the particle. This is a first main result of this
Hence, we can rewrite the probability distributit80) as work. The stochastic incrementg’(r) =dW(r) are distrib-
uted according t@35¢) and, therefore, characterized by
1+1 — c _1s (B

(W) = V2D . G‘X[< 2D* apWs (t)wi (t)) (W*(7)) =0, (360)

X S(Ux WE(1)), (33 S

V% B ’ _ 1 1
where (u.,)=(-c,0) is the covariant(1+ 1)-velocity of the (Wi(nw(r')) = DB, ;= (360

particle a the comoving rest frame. It should be stressed that,

because of the constraif82), only one of the two incre- With D* given by (35a. Note that in each comoving Lor-
mentsw*=dW* is to be regarded as “independent,” which is entz frame, in which, at a given momentthe particle is at
reflected by the appearance of thdunction in (33). Also  rest, the marginal distribution of the spatial momentum in-
note that, due to the prefactorthe normalization condition crements, defined by

takes the simple form

1 PHw(t) = f d(wO(t)) PHHw(1)), (37
1=91]1 f d(wW(t)) (PEWAR)). (34) -

a=0J —x»

. reduces to a Gaussian. In the Newtonian limit case, corre-
Furthermore, analogous {@7), we have the following more sponding tov?<c?, one thus recovers from Eqé35) and

general representation of the correlation tensors: (36) the usual nonrelativistic Brownian motion.
: UgUg
Dop=2D d7| 705+ 2 (353 C. Langevin dynamics in the laboratory frame
A laboratory frame is, by definition, an inertial system,

5 = 1 . UgUg (35b) in which the heat bath is at rest, i.e., ¥y we have(U?)
B~ 5p g\ TBT T2 ) =(c,0) for all timest. Hence, with respect t&, coordinates,

the two stochastic differential Eq&36b) assume with(36¢

Then, in an arbitrary Lorentz frame, the dengi®g) can be aE6D 360

) the form
written as
dp = - vpdt + w(t), (38a

PHYwW(7)) = exp[— %E)aﬁwa(r)wﬂ(ﬁ}

Va4mD dr

X 8(uw(7))

dE = - vpudt + cwl(t). (38b)

" Here it is important to note that the stochastic increments
= — c exp{— W)W (T)}g(u wY(7)). we(t), appearing on the right-hand side. @8), are not of
V4mD dr 4D dr ‘ simple Gaussian type anymore. Instead, their distribution
(35¢  how also depends on the particle veloaity This becomes
R immediately evident, when we rewrite the increment density
To obtain the last line from the first, we have inser2g, (350 in terms of2, coordinates. Using
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02 1, it will become clear that, for example, choosimg p(t)
(U)=(=y,w), »'= 1-=2 (W) = (wo,w), in Egs. (46) would be consistent with an Ito-interpretation
[20,33,34 of the stochastic differential equati¢88a). How-
(39 ever, we will also see that alternative interpretations lead to

we find reasonable results as well.

y 1/2 W(t)2 —Wo(t)2 Ill. DERIVATION OF CORRESPONDING
47D dt - 4D—dt/)/ FOKKER-PLANCK EQUATIONS

_ The obijective in this part is to derive relativistic Fokker-
X Ae(t) = yow(t)). (40 Planck equation$FPE) for the momentum densiti(t, p) of
As we already pointed out earlier, the function in (40)  a free particle in the laboratory fran¥,. Before we deal
reflects the fact that the energy incremestis coupled to  with this problem in Sec. Il B, it is useful to briefly recall
the spatialmomentun incrementw via the nonrelativistic case.

’Pl”‘(Wa(t)) = C(

oW R
O=uwe=—-cyl+yw O wl=—, (41) A. Nonrelativistic case
¢ Consider the nonrelativistic Langevin equatigip)
Hence,w? can be eliminated from the Langevin equations

- d
(38D), yielding d—'i’ =~ wp+L(D), (478
dE = — vpodt + vw(t) = vdp. 42
_ _ _ vPY ow(t) =vdp 42 where p(t)=nmu(t) denotes the nonrelativistic momentum,
Using the identity and, in agreement witf8c), the Langevin forcd.(t) is dis-
c tributed according to
=2 (43)
v Jmec? + p2’

1/2
P(L(t) = (i> exp(— EL(t)z). (47b)

we can further rewrité42) as 4mD 4D

As is well known[20,35, the related momentum probability

dE= %dp O E(t) = Vmlc* + p(t)°c?. densityf(t,p) is governed by the Fokker-Planck equation
et +p
J 1% d
44 —f:—( f+D—f>, 48
(44) x =g\ PP (48)

Thus, in the laboratory fram&, the relativistic Brownian . . o
motion is completely described by the Langevin equationWhose stationary solution is the Maxwell distribution

(389 already. If we assume that the Brownian particle has Ly \12 p?
fixed initial momentunmp(0) =p, or initial velocity v(0) =vy, f(p) = (ﬁ) exp(— 5) (49
respectively, then the formal solution ¢889 reads([20] m
Chap. I1X.]
. B. Relativistic case
p(t) = pee "t +e™ f e"w(s). (45) We next discuss three different relativistic Fokker-Planck
0 equations for the momentum densit{t,p), related to the
The stochastic procegd5) is determined by the marginal Stochastic processes defined B and(46). ,
distribution Pl(W(t)), defined in Eq(37) Performing the Our starting point is the relativistic Langevin equation

(383, which holds in the laboratory franm¥, (i.e., in the rest

integration over thes function in (40), we find . .
9 (40) frame of the heat bajhNext we define a stochastic process

1/2 W(t)z > by
1 — P DA
Pwn) = <4quydt) eXp< 4Dydt)’ (463 wit)
where y(t) = \—; (50)
2 |-1/2 2 1/2 H :
and using(46b), we can rewrite(383 as
y:[l-"—z} :{“_mg&} . (46D 0460 e(r"")
dp = - vpdt + Vyy(t), (51a

On the basis of Eqs(389 and (46) one can immediately o .
perform computer simulations, provided one still specifiesLWhere y(t) is distributed according to the momentum-

the rules of stochastic calculus, i.e., which valugds to be independent density

taken to determiney in (46). In Sec. IV several numerical L 1 112 y(t)2

results are presented. Before, it is useful to consider in more Ply®]= (4 5 dt) exp(‘ D dt)' (51b)
detail the Fokker-Planck equations of the relativistic Brown- &

ian motion in the laboratory framE,. By doing so in Sec. Thus, instead of the incremenig(t), which implicitly de-
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pend on the stochastic procgsvia Egs. (46), we consider

ordinary p-independent white noise(t), determined by f —= C2n12\/ (56)
(51b), from now on. Due to the multiplicative coupling of

y(t) in (518, we must next specify rules for the “multiplica- we find the foIIowmg epr|C|t representation @5):

tion with white noise”[note that, on viewing Eq$11), (35), 9 \ -1/ 5

and(36) as postulates of the relativistic Brownian motion, all f(p) = ( p_) p(— \/7'3_)

. . . Ly . . Ip) CI 1+ 2 €X :8 1+ 2 ' (57)
above considerations remain valid, independent of this speci- méc cn?
fication].

In Secs. llIB 1, Il B 2, and 11l B 3, we shall discuss three
popular multiplication rules, which go back to proposals VMAC2
made by Hanggi and Thom#$9,42, Van Kamper 20], Ito B= D
[33,34], Stratonovich 36,37, Fisk [38,39, Hanggi[40,41],
and Klimontovich[31]. As it is well-known from[19,20,3Q, The dimensionless parametg@rcan be used to define the
these different interpretations of the stochastic pro¢Bss  scalar temperatur€ of the heat bath via the Einstein relation
result in different Fokker-Planck equations, i.e., the Langevin C2
equation(51) per sedoesnot uniquely determine the corre- keT = mc_D (59)
sponding Fokker-Planck equation; it is the stochastic inter- B Sy’
pretation of the multiplicative noise that matters from a
physical point of view.

Nevertheless, the three approaches discussed below ha
in common that, formally, the related Fokker-Planck equa-
tion can be written as a continuity equatipf?]

where

(58)

with kg denoting the Boltzmann constant. Put differently, the
arameter,B mc?/(ksT) measures the ratio between rest
fass and thermal energy of the Brownian patrticle.

2. Stratonovich approach

ﬁf(t,p) + ﬁj(t,p) =0, (52) Acpording to StratonO\_/ich, the_coefficie_nt befo;@) in
at p (519 is to be evaluated with the midpoint discretization rule,

but with different expressions for the probability current!-€-

j(t,p). It is worthwhile to anticipate that only for the Hanggi- p(t) + p(t + dt)
Klimontovich approachsee Sec. Il B 3the currentj(t,p) = (f)
takes such a form that the stationary distributior(%ff) can
be identified with Jittner’s relativistic Maxwell distri- This choice leads to a different expression for the current
bution[24]. [19,36—-38, namely,

1. Ito approach

(60)

—d ——
) == f+Dv — fl. 61
According to Ito’s interpretation of the Langevin equation s(P.Y [Vp ) ap\ 7(P) } 61

(51a, the coefficient beforg(t) is to be evaluated at the
lower boundary of the intervdt,t+dt], i.e., we use the pre-

point discretization rule
fs(p) =7 —e p{ f } (62)
y=¥p(t), (53 ¥p)

where as before and, by virtue 0f(56), the explicit stationary solution of Stra-
RN tonovich's Fokker-Planck equation reads
¥(p) = (1 + p) :

p2 -1/4 p2
fS(p):CS(1+mz_c2) exp(—,B 1+cz_mz)' (63)
Ito’s choice leads to the following expression for the current

[19,20,33,3%
3. Hanggi-Klimontovich approach

. _ d
(P, =- [VpH Da—'y(p)f]. (54) Now let us still consider the Hanggi-Klimontovich sto-
chastic integral interpretation, sometimes referred to as the
The related relativistic Fokker-Planck equation is obtamec{ransport form[40-47 or also as the kinetic forf81]. Ac-
by inserting this current into the conservation I&82). The  cording to this interpretation, the coefficient in front yit)

This Stratonovich-Fisk curreng vanishes identically for

current(54) vanishes identically for in (513 is to be evaluated at the upper boundary value of the
interval [t,t+dt]; i.e., within the postpoint discretization we
1(p) = —ex -= J ol (55)  set

whereC, is the normalization constant. Consequent|yp) 7= y(p(t+db)). (64)
is a stationary solution of the Fokker-Planck equation. InThis choice leads to the following expression for the current
view of the fact that [31,41,42:
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i J 2@ o ' t '
I = [fo ’ DY(p)(?_f] . (€9 @ pe100 Stratonovicﬂ ---------------
P 15 L relativistic Maxwell — ]
The currentj vanishes identically for —
0
v p = 1
f =Cuykexpl — = | dp—— |, 66 <
nk (P) HK P{ D f 7(p)} (66) = N
and, by virtue of(56), the stationary solution explicitly reads '

2 0 . . N . .
frk(P) = Cuk exp(— BA\/1+ %) . (673 -1 -0.5 0 05 1

vic]
Using the temperature definition i59) and the relativistic , . . , .
kinetic energy formuleE=nPc*+p?c?, one can further re- 1471 (o) p=1.0 Stratonovies 1
write (6738 in a more concise form as 1.2 ¢ relativistic Maxwell ----— ]
E — 1
fri(p) = Cr eX%‘ k_T> (67b o 08 |~
B = g
S 06} ¢

The distribution function(67) is known as the relativistic 04|
Maxwell distribution. It was first obtained by Jittng24] '

back in 1911. Pursuing a completely different line of reason- 0.2 ¢
ing, he found that67) describes the velocity distribution of 0

-1 -0.5 0 0.5 1

the noninteracting relativistic gdsee alsd43]). In contrast

to our approach, which started out with constructing the rela- viel

tivistic generalization of the Langevin equations, Juttner’s - : - o
derivation started from a maximum-entropy-principle for the oL} ©@PF02 Stratonovich ]
gas. relativistic Maxwell -

By comparing(55), (63), and(673 one readily observes
that the stationary solutiorfyg differ from the Jattner func-
tion fyk through additionap-dependent prefactors. In order
to illustrate the differences between the different stationary

o) [€]

solutions, it useful to consider the related velocity probability 01+
density functionsgysuk(v), which can be obtained by ap-
plying the general transformation law 0.01 : : :
-1 0.5 0 0.5 1
Bo) = 1(p(e))| 2 (68) Vi
FIG. 2. Stationary solutiong,;s;yk(v) of the relativistic Fokker-
in combination with Planck equations, according to Itf:solid line), Stratonovich

mo (S:dotted, and Hanggi-KlimontovicHHK:dashed-dotted For low
= temperatures, i.e., fof>1, a Gaussian shape is approachsee
V1 -v?/c? (@]. On the other hand, for very high-temperature values, corre-

. . . . sponding tgB3=1, the distributions exhibit a bistable shape, and the
The determinant factdﬁp/gﬂ n (6.8) IS responS|bIe_ for the quantitative deviations betweeb)s;k(v) increase significantly as
fact that the velocity density functiong,s;ux(v) are, in fact, B—0.

zero ifv?>c2

In Fig. 2 we have plotted the probability density functions symmetric arouna =0. Instead, they will be centered around
$usmk(v) for different values of the paramet@ The nor-  the nonvanishing’ velocity V' of the heat bath.
malization constants were determined by numerically inte- An obvious question then arises, which of the above ap-
grating ¢(v) over the interva[-c,c]. As one can observe in proacheglto, Stratonovich, or Hanggi-Klimontovighis the
Fig. 2a), for large values ofB, corresponding to low- physically correct one. We believe that, at this level of analy-
temperature valuesksT<mc®, the density functions sis, it is impossible to provide a definite answer to this ques-
dusmk(v) approach a common Gaussian shape. On the otheion. Most likely, the answer to this problem requires addi-
hand, for high-temperature valu&gT=mc the deviations tional information about the microscopic structure of the heat
from the Gaussian shape become essential. The reasonbath(see, e.g., the discussion of Ito-Stratonovich dilemma in
that, for a (virtual) Brownian ensemble in the high- the context of “internal and external” noise as given in Chap.
temperature regime, the majority of particles assumes velociX.5 of van Kampen’s textbook20]). At this point, it might
ties that are close to the speed of light. It is also clear that ile worthwhile to mention that the relativistic Maxwell dis-
other Lorentz frame&’, which are not rest frames of the tribution (67) is also obtained via the transfer probability
heat bath, the stationary distributions will no longer staymethod used by Schay, see E8.63 and(3.64) in Ref.[3],
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and that this distribution also results in the relativistic kinetic 14l ' ' “Ito
theory[29]. By contrast, the recent work of Franchi and Le Ll elativinatonovich
Jan[13] is based on the Stratonovich approach. From physi- ' simulated (N=10000, t=100, dt=0.001) =

cal insight, however, it is the transport form interpretation of

Héanggi and Klimontovich that is expected to provide the s 08
physically correct description. “ el
0.4
IV. NUMERICAL INVESTIGATIONS 02| @ B=100 1
The numerical results presented in this section were ob- 03 _ o o8 ’
tained on the basis of the relativistic Langevin equatl), | vicl |
which holds in the laboratory framg,. For simplicity, we
confined ourselves here to considering the Ito-discretization 14| ' ' “Ito
scheme with fixed time stept ¢see Sec. 111 B 1 In all simu- il relativisia Maswall ——— |
lations we have used an ensemble sizeNef10 000 par- ' simulated (N=10000, =100, at=0.001)
ticles. Moreover, a characteristic unit system was fixed by T
settingm=c=v»=1. Formally, this corresponds to using res- < 08
caled dimensionless quantities, suchpasp/mc X=xv/c, T “ oosl
=ty, v=v/c, etc. The simulation time-step was always cho-
sen as t£0.001°%, and the Gaussian random variabyés 04T
were generated by using a standard random number genera- 02 (o) B=1.0
tor. 0 . . .
8 0.5 0 0.5 1
vcl
A. Distribution functions , . =
In our simulations we have numerically measured the cu- e elativenatonovich -
mulative velocity distribution functior-(t,v) in the labora- 121 simulated (N=10000, 1=100, ct=0.001) = |
tory frame2,. Given the probability density(t,v), the cu- I
mulative velocity distribution function is defined by s
. ('S
F(t,v) =f dug(t,u). (69
—-C
In order to obtainF(t,v) from numerical simulations, one , ,
simply measures the relative fraction of particles with veloci- - -0.5 0 05 1
ties in the interval-c,v]. Figure 3 shows the numerically viel

detgrm|necbtatlo_qaryd|Str|but|on functlonisqu.are}s taker_l FIG. 3. These diagrams show a comparison between numerical
at time t=100»"" and also the corre_spondlng anally'ucal and analytical results for the stationary cumulative distribution
.CurveSFI/S/HK(U)' The. latter were Ob_tamed by r.‘umer'ca"y function F(v) in the laboratory fram&,. (a) In the nonrelativistic
integrating Eq.(69) using the three different stationary den- |imit g>1 the stationary solutions of the three different FPE are
sity functions¢ysk(v) from Sec. Il nearly indistinguishable(b)—(c) In the relativistic limit case8<1,

As one can see in Fig.(8), for low-temperature values however, the stationary solutions exhibit deviations from each
corresponding t@> 1, the three stationary distribution func- other. Because our simulations are based on an Ito-discretization
tions are nearly indistinguishable. For high temperatures corscheme, the numerical valuésquares are best fitted by the Ito
responding tg3=<1, the stationary solutions exhibit signifi- solution(solid line).
cant quantitative differenceqdsee Figs. &) and 3c)].

Because our simulations are based on an lto-discretization

scheme the numerical valuésquares are best fitted by the B. Mean-square displacement

Ito solution(solid line). Also note that the quality of the fit is
very good for the parameters chosen in the simulations, and

that this property is conserved over several magnitudes of | f the freeslativistic B X ion. B
This suggests that numerical simulations of the Langeviﬁ) acement of the freeelativistic Brownian motion. Because

equations provide a very useful tool if one wishes to studyhiS quantity is easily accessible in experiments, it has played
relativistic Brownian motions in more complicated settings&" important role in the verification of the nonrelativistic
(e.g., in higher dimensions or in the presence of additionain€ory- _

external fields and interactionsin this context, it should As before, we consider an ensemble Nfindependent
again be stressed that the appropriate choice of the discreff"ownian particles with coordinates;(t) in X, and initial
zation rule is especially important in applications to realisticconditions x;(0)=0,v;(0)=0 for i=1,2,... N. The posi-
systems. tion mean value is defined as

In this section we consider the spatial mean-square dis-
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N . . . .
1 | dt=0.001, N=10000 p=0.1
X(t) = =20 x(0), (70) !
Niz1 — p=1
and the related second moment is given by = o4 r B=10
N =
— 1 o
X4(t) = NE [xi) (D12 (71) =
i=1 0.01 -
(a)
The empirical mean-square displacement can then be defined 0 20 40 60 80 100
as follows: thvh
o?(t) =>2(1) - (x(1)*. (72) 1wy 0001, N-10000 ]
Cornerstone results in the nonrelativistic theory of the one- — ol 7 .
dimensional Brownian motion are N '
lim X(t) — 0, (733 g ooy
o 2
0.001 |
oAt (b)
lim L — 2D%, (73b) 0.0001 . . . .
oot 0.1 1 10 100 1000

B
where the constant
FIG. 4. (a) Mean-square displacement divided by titnas nu-

keT D merically calculated for differenB-values in the laboratory frame
== (74) 3, (rest frame of the heat bathAs evident from this figure, for the
relativistic Brownian motion the related asymptotic mean-square

is the nonrelativistic coefficient of diffusion in coordinate displacement grows linearly with (b) The coordinate space diffu-
sion constantD’yB) was numerically determined at time

space(not to be confused with noise paramei®r. > o _ e
It is therefore interesting to consider the asymptotic be-- 100y, The dashed line corresponds to the empirical fitting for-

. . o . mula DX(B)=c?»"1(B8+2)71, which reduces to the classical nonrel-
hawor of_the qua_nt|ty02(t)/t for r_el_am_wstlc Brovyman mo-  _vistic risuItDX=§2/(vﬁ)=kT/(mv) for B> 2.
tions, using again the Ito-relativistic Langevin dynamics
from Sec. Ill B 1. In Fig. 4a) one can see the corresponding ; 5 ;
numerical results for different values @ As one can ob- 4 cp 7 __ 9.
serve in this diagram, for each value @f the quantity atf(t,p,x)+ \;’mzcz+p2axf(t'p’x)_ apj'/S’HK(t’p’X)’
a(t)/t converges to a constant value. This means that, at (76)
least in the laboratory framg,, the asymptotic mean-square
displacement of the free relativistic Brownian motions in-which might serve as a suitable starting point for such an
creases linearly with. For completeness, we mention that analysis. Compared to the relativistic Fokker-Planck equa-
according to our simulations the asymptotic relati@i3a tions from Sec. IV, the second term on the left-hand side of
holds in the relativistic case, too. (76) is new. In particular, we recover the relativistic Fokker-
In spite of these similarities between nonrelativistic andPlanck equations for the marginal density, p), see Sec. IlI
relativistic theory, an essential difference consists of the exby integrating Eq(76) over a spatial volume with appropri-
plicit temperature dependence of the limit valug*2As il-  ate boundary conditions. Finally, we mention once again that
lustrated in Fig. 4), the numerical limit values2},, mea-  also(76), as well as all the other results that have been pre-
sured at timet=100v"1, are well fitted by the empirical sented in this section, exclusively refer to the laboratory
formula frame 3.

DX

my M2

2
X C

D= ———, 75 V. CONCLUSION
WB+2) (79

Concentrating on the simplest case of 1+1 dimensions,
which reduces to the nonrelativistic res(if4) in the limit  we have put forward the Langevin dynamics for the stochas-
caseB>2. tic motion of free relativistic Brownian particles in a viscous

We will leave it as an open problem here, to find an anamedium (heat bath Analogous to the nonrelativistic
lytical justification for the empirically determined formula Ornstein-Uhlenbeck theory of Brownian  motion
(75). Instead we merely mention that, on noti(4@), the [17,19,20,44 it was assumed that the heat bath can, in good
relativistic Fokker-Planck equations for the full-phase spacepproximation, be regarded as homogenous. Based on this
density reads assumption, a covariant generalization of the Langevin equa-
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tions has been constructed in Sec. Il. According to thes¢he laboratory coordinate time; the temperature dependence
generalized stochastic differential equations, the viscous fricef the related spatial diffusion constant, however, becomes
tion between Brownian particle and heat bath is modeled bynore intricate. In principle, the numerical results suggest that
a friction tensorv,s. For a homogeneous heat bath this fric- simulations of the Langevin equations may provide a very
tion tensor has the same structure as the pressure tensor ofigeful tool for studying the dynamics of relativistic Brown-
perfect fluid[25]. In particular, it is uniquely determined by jan particles. In this context it has to be stressed that an
the value of the(scalay viscous friction coefficient, mea-  5pnropriate choice of the discretization rule is especially im-
sured in the instantaneous rest frame of the pari®lec. orant in applications to realistic physical systems. If, for

I B1). Similarly, the amplitude of the stochastic force is gyample, agreement with the kinetic theg2g] is desirable,
?"SO goveme'd by a single paramdnsrspeufylng the Gauss- then a postpoint discretization rule should be used.
ian fluctuations of the heat bath, as seen in the instantaneous . 110" ethodical point of view, the systematic relativ-

rest frame of the particléSec. Il B 2. istic Langevin approach of the present paper differs from

In Sec. Il C the relativistic Langevin equations have bee hav's t iti babilit £8] and also f th
derived in special laboratory coordinates, corresponding to}C hays ransi |(|)_ndprbo atk: Ity ap;ﬁroafs 7a2 also hrolrlnd' €
specific class of Lorentz frames, in which the heat bath i echniques applied by other auth¢#6,7]. As we shall dis-

assumed to be at reit all times. One finds that the corre- C€USS in & forthcoming contribution, the above approach can
sponding relativistic distribution of the momentum incre- €aSily be generalized to settings that are more relevant with
ments now also depends on the momentum coordinate. Thi§gard to experimentsuch as the1+3)-dimensional case,
fact is in contrast with the properties of ordinary Wienerthe presence of additional external force fields, Jetc.
processes [21,23, underlying nonrelativistic standard  With regard to future work, several challenges remain to
Brownian motions with “additive” Gaussian white noise. be solved. For example, one should try to derive an analytic
However, as shown in Sec. Il it is possible to find an equiva-expression for the temperature dependence of the spatial dif-
lent Langevin equation, containing “multiplicative” Gaussian fusion constant. A suitable starting point for such studies
white noise. might be the FPE for the full-phase space density given in

In order to achieve a more complete picture of the rela-Eq. (76). Another possible task consists of finding explicit
tivistic Brownian motion, the corresponding relativistic exact or at least approximate time-dependent solutions of the
Fokker-Planck equationdPE) have been discussed in Sec. relativistic FPE. Furthermore, it seems also interesting to
[l (again with respect to the laboratory coordinates with theconsider extensions to general relativity, as, to some extent,
heat bath at restAnalogous to nonrelativistic processes with recently discussed in the mathematical litera{r&. In this
multiplicative noise, one can opt for different interpretationscontext, the physical consequences of the different interpre-
of the stochastic differential equation, which result in differ-tations (lto  versus  Stratonovich  versus Hanggi-
ent FPE. In this paper, we concentrated on the three mogtlimontovich) become particularly interesting.
popular cases, namely, the Ito, the Stratonovich-Fisk, and the Note added in proofRecently, we have been informed by
Hanggi-Klimontovich interpretations. We discussed andF. Debbasch about two interesting recent papéss6 on a
compared the corresponding stationary solutions for a freeelativistic generalization of the Ornstein-Uhlenbeck process.
Brownian particle. It could be established that only theThese two items are related in spirit to the present work: The
Hanggi-Klimontovich interpretation is consistent with the authors of those references have postulated a relativistic
relativistic Maxwell distribution. This very distribution was Langevin equation with additive noise and a drift term that
derived by Juttnef24] as the equilibrium velocity distribu- differs from ours; but which also yields the correct relativis-
tion of the relativistic ideal gas. Later on, it was also dis-tic Juttner distribution. Thus, our HK-approach and theirs
cussed by Schay in the context of relativistic diffusi¢B$ possess the same stationary solution, but notably do exhibit a
and by de Groott al. in the framework of the relativistic different relaxation dynamics.
kinetic theory[29].

Ir_1 Sec. IV we prese_:nted_ num_eric_al results, obtai_ned on the ACKNOWLEDGMENTS
basis of an Ito prepoint discretization rule. The simulations
indicate that—analogous to the nonrelativistic case—the J.D. would like to thank S. Hilbert, L. Schimansky-Geier,
relativistic mean-square displacement grows linearly withand S. A. Trigger for helpful discussions.
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